Science-based improvements to strengthen FAD management in relation to Principle 2

Understanding the MSC Fisheries Standard 3.0

Dr. Gala Moreno

Senior scientist at International Seafood Sustainability Foundation

© ISSF (2012)

Photo: David Itano

Outline

1. About ISSF

2. FAD research releated to Principle 2

2.1 FAD structure impact & solutions

- A. Non-entangling FADs
- B. Biodegradable FADs
- C. FAD marking
- D. Best Practice to avoid FAD loss and abandonment

2.2 Bycatch: ETP species

2.3 Evidence Requirements Framework (New tool) Electronic monitoring

1. About ISSF

© ISSJ (2012)

Photo: David Itano

Strategic Pillars

Photo: Fabien Forget

S 1020

Number of vessels (all gears) participating in FIP/MSC initiatives listed on the VOSI

	PS-large	PS-small	PS-v small	Longline	Pole and line	Handline	Supply& Tender	
On PVR and VOSI	323	2	-	144	18	1	1	489
On VOSI not on PVR	14	-	-	5	1	-	-	20
	337	2	-	149	19	1	1	509

Number of vessels (PS-large) registered in tuna RFMOs (from ISSF 2023-04)

652 PS-large vessels, of which 91 are registered to more than one tRFMO

	CCSBT	IATTC	ICCAT	ютс	WCPFC
ССЅВТ	0				
IATTC		222	19	1	28
ICCAT			108	14	18
ютс				96	29
WCPFC					326

Distribution of large-scale tropical tuna purse seine (\geq 335 m³ FHV) tRFMO authorizations. Numbers in yellow represent the total number of vessels authorized in that tRFMO (including both vessels authorized by that tRFMO only and vessels authorized also in other tRFMOs).

Skippers workshops map

6

2. FAD Research related to Principle 2

© ISSJ (2012)

What are Fish Aggregating Devices?

Importance of FADs

In 2021, 4.8 million tonnes catch of major comercial tunas

56% Skipjack 31% Yellowfin tuna 8% Bigeye tuna

Impacts of FADs on the ecosystem

Bycatch

Ghost Fishing

Habitat damage & Marine Pollution

Principle 2, addressed in this presentation

Ghost gear/ Ghost fishing & FADs

- > P2 management Pls (2.2.2, 2.3.2 or 2.1.2) New Ghost gear management strategy Sls
- Of special relevance to FADs : Prevent gear loss, Monitoring lost gear and entanglements, Marking and retrieval programs, Minimize impact of lost gear

Habitat : 2.3.2 - Demonstrate they have an appropriate and precautionary management system or measures in place that set out how they will manage and mitigate impacts on sensitive habitats if encountered.

ETP

- Species designation in P2 Some shark and other species will now be categorized as ETP/OOS and will be given greater protection through the standard.
- PIs 2.2.X The impacts of fisheries on ETP populations must be assessed more explicitly and through a more precautionary approach. Fisheries must now provide quantifiable evidence that they have effective management measures in place to reduce impacts on ETP and OOS species, in alignment with best practice.
- **Shark finning**: Any fishery that retains sharks, without exception, has a **Fins Naturally Attached (FNA**) policy in place and the policy is enforced.

Evidence Requirements Framework (New tool) Independent observation

Challenges to be addressed by PS fleet

2.1 FAD Structure Impact

Consistent and

SF 2022 / Gala Moreno

Research to reduce the impact of FAD structure

A. Non-entangling FADs

B. Biodegradable FADs

C. FAD marking

D. Best Practice to avoid FAD los and abandonment

Impacts of FAD Structure on the ecosystem

Ghost Fishing: Entanglement Issues

FAD stranding & Marine Pollution

A. Non-entangling FADs

Three Categories of FADs - low to high entanglement risk

Considering the variety of designs and materials used worldwide to construct FADs, the ISSF Bycatch Steering Committee ranks FADs according to the risk of entanglement related to how the nets are used.

LOWER Entanglement **Risk FADs**

RAFT Use doily small mostly.

retting (+ 2.5 ieth / 7 cm stenched estably if covering with net thosh spole and submirped partici. · If small mainty winting

in used as cover, it. is tights wrapped. with no loose netting hanging from the ruft.

TAIL

- · If not its used as automorphic tail, could be of any much size or nightly thad into namaje-kke burden, vers
- · D'Open jaintel rentang its used, only small according to the mitch tigs (v 2.5 inch [7 cm] streeched month's tare for used. But weight the parel to being it taut.

From lowest to highest to risk, three categories are described. These designs are

examples; the important elements are the net type and its configuration.

l

Despite using

netting, these

design elements

reduce the risk

of entanglement

events.

These FADs are known to cause entanglements with turtles and sharks.

B. Biodegradable FADs

Conventional FAD

Biodegradable FAD trials

BioFADs: New Trials and Large-Scale Deployment

2018-Present

C. FAD Marking

FAD loss and abandonment

Western Pacific (Escalle et al. 2019)

Fate of deactivated FADs?

Atlantic Ocean 19-22% (Imzilen et al. 2021)

Indian Ocean 15-20% (Imzilen et al. 2021)

Quantifying Connectivity

21

Tests of a FAD Marking Device

Trials during fishing operations in Central Pacific Ocean tested:

- Battery life / positions per day
- Attachment to FAD structure
- Data reliability
- Lifetime

The device must be:

- ✓ Autonomous
- ✓ Durable
- ✓ Cost effective

Results on track accuracy

Ongoing work to define best practices for fishers through the lifetime of a dFAD:

	FAD activity	Entanglement	Stranding		
 ✓ Prevention ✓ Mitigation 	Construction	Fully non-entangling FADs (NEFAD): FADs without netting in any of their components	Construct biodegradable FADs that last 6 months		
		Built FADs on land with the required specifications to be NE	Construct biodegradable FADs that last one year and NEFAD to avoid entanglements in coastal habitats		
	Deployment Visit/Set		Avoid areas of deployment with high loss and abandonment risk		
			Limit more the active buoys per vessel		
		Rutinely lift the FAD to observe any entanglement	During visits/sets retrieve as much FADs as possible especially :		
		Release the species entangled if any	(i) In areas close to the limit of the fishing ground, even if the dFAD is in good condition		
			(ii) Retrieve FADs without fish as much as possible		
			Check FADs that are close* and repair or retrieve if damaged		
			Rutinely lift the dFAD to see if the structure is damaged with the risk of sinking or ending up lost		
			If the structure is damaged repair it or retrieve it		
	Deactivation	Alternative FAD marking buoys, cheaper to follow the dFAD trajectory until the end of its lifetime			
		No deactivation of the FAD			
		Sell and share FADs before they are lost and when they drift to the western Pacific			
✓ Remediation		Before FAD is deactivated see if there is any vessel close to retrieve it			
	Retrieval	When someone elses FAD is encountered, retrieve everything buoy and FAD structure			
		More communications among vessels to retrieve FADs at sea			
		Use one purse seine vessel to retrive FADs for a given time and shift among the entire fleet			
		Use FAD cleaning vessels paid by various companies to retrieve FADs and regulate their activity			
		Cleaning vessel paid by fishing associations			
		Cleaning vessel paid by the regional body			

*no more than 10 miles, take into account fuel is very expensive and carbon foot print

2.2 Bycatch

Video poor practices

Shark release when using hoppers

SHARKS RELEASED WITH HOPPER

UNLOADING BRAIL INTO HOPPER, SHARK QUICKLY RELEASED AT TOP DECK

SHARK ARRIVING TO THE LOWER DECK

85-100% of sharks released from the top deck with hoppers vs. 20-45% when not using them

Bycatch release and tagging trainings

During cruises with a scientist on board

Fishers sampling for the Project

2.3 Evidence Requirements Framework (New tool) Electronic monitoring

© ISSF (2012)

- Photo: David Itano

All RFMOs are developing minimum standards for EM programs

• EM minimum standards for the implementation of EM systems in PS and LL.

IOTC has adopted EM mínimum standards (Res 23-08), May 2023

 A new column on the ISSF Vessels in Other Sustainability Initiatives (VOSI) public vessel list to show vessel participation in the implementation of EMS.

Catlink

ISSF Technical Report 2022-09

MINIMUM STANDARDS FOR ELECTRONIC MONITORING SYSTEMS IN TROPICAL TUNA PURSE SEINE AND LONGLINE FISHERIES

Hilario Murua, Jon Ruiz, Ana Justel-Rubio and Victor Restrepo April 2022

Suggested citation:

Murua H., Ruiz J., and Restrepo V. 2022. Minimum Standards for Electronic Monitoring Systems in Tropical Tuna Purse Seine and Longline Fisheries. ISSF Technical Report 2022-09. International Seafood Sustainability Foundation, Washington, D.C., USA

Conclusions

Looking back 10 years shows that there has been **great progress**

Still **challenges** to address to make the use of FADs more sustainable in relation to MSC Principle 2:

- Fully non-entangling and biodegradable FADs
- Fewer FADs, but better FADs
- Better knowledge on tunas, sharks and other species
- New techniques and devices and ways of fishing

https://www.iss-foundation.org Contact: info@iss-foundation.org gmoreno@iss-foundation.org

Thanks!